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Objective

The objectives of this project have not changed. The specific objective as stated in the
original research proposal is to develop chromatographic methodologies to provide
insight towards the polymer diazoluminomelanin (DALM) and related producis. which
have proven to be of significant interest to the USAF. This project was to be performed
in conjunction with Dr. John R. Wright at this institution whom had been characterizing
reaction products associated with DALM. With the loss of funding for JRW. our role of
the project was expanded to include all efforts to gain further insight into the chenucal

characterization of the polymer.

Our method of characterization of the DALM polymer has been focused initially on the
sole characterization of the polydiazotized-3-amino-L-tyrosine (p-DAT) polymer, and 1t
successful we would proceed to the addition of luminol. There have been muny
preparation protocols de;/eloped for the formation of DALM including biologicul and
svnthetic methods. When we submitted the proposal for this project, our group’s eftort
was to be in collaboration with Dr. John Wright's efforts at this institution. We have
rehied solely on the protocols provided by his previous research for the synthetic
production of p-DAT and DALM.

Initial Reaction of 3-AT

Our 1irst studies examining the 3-AT reaction made it clear that this has the potential to

be a very complex system of products. Figure 1 is an electropherogram of the reaction
products after precipitation with acetone. The polymeric species elute around 8-10 min
under these conditions, however CE can resolve more than 40 components of this
reaction mixture. In order to fully understand this system, we must know what each of
these products identity and secondly determine which ones are active in the formation of
the polymer and to what extent. We must consider that not only the aromatic amine is a
site for potential polymeric linkage, but also the a-amine can play a critical role as well.
If we look at the potential reactions that can occur, we get a complex picture to match our
experimental findings. The following reaction schematic shows a number of products
that can form under ideal condition, i.e., equal equivalence of nitrite and at a cooled
temperature. Our reaction calls for 5.5 equivalences of nitrite and is performed at room

temperature.
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Formation of Reactive Carbocation
aromatic azo linkage Intermediate

First. only consider the aromatic amine. Upon reaction with nitrous acid. the diazonium
intermediate should be formed which is unstable and quite reactive. Conventional uses of
~t.ch diazonium salts have been to form aromatic azo-type linkages in pigment and dyc
chemistry. When molecular nitrogen is evolved. the reactive carbocation is formed
which 1~ then open for attack by a nucleophile. The literature describing the potential
tvpes of products is quite overwhelming. The carbocation could be attached yiefding the
additon of -NO,, -Cl, -OH, or -NO, which all exist in varying concentration in our
reaction matrix. We also know that the aromatic ring itself is subject to nitration as our

analog studies have indicated.
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W cnwe constder only the aliphatic amine, the initial product should be the aliphatic

drazonum, which will be very unstable at room temperature, decomposing to yield the
carhocation. Loss of CO, would yield a carbene. Loss of hydrogen would yield a
cinnamie acid derivative. We must also consider that any of these potential intermediates

could react with other intermediate to form "unusual” species.

To eet a better understanding of the potential reactions that occur and attempt to simplify

our experimental picture, we examined a large number of analogs. We studied analogs




with only o-amines or aromatic amines. We have limited this report to the analog data

that we feel is potentially significant to the formation of the polymeric species of interest.
Alanine

The amino acid alanine was reacted as a model compound to monitor a-amino group

activity under identical reaction conditions. Alanine is among the simplest potential

model compounds.

H
CH,

Alanine
MW = 89

The deamination of a-amino acids by nitrous acid has been the basis of the classic Van

Slyke determination for the quantification of amino acids developed in the 1910's [1. 2].

This methodology was described by the following equation for glycine:
H,N"-CH,-COO™ + HNO, — HO-CH,-COOH + N, + H.O

Closer examination of this test revealed that "too much” nitrogen was evolved plus the
addition of CO,. The deamination equation given above is an incorrect/incomplete
description of the total reactions occurring. Researchers later studied this reaction and
suggested the reaction was indeed much more detailed and that a vast array of reaction
products may be observed [3]. However, these studies were prior to modern

spectroscopic techniques and many of the products were speculation.

We performed the reaction in aqueous solution with 5.5 equivalences of nitrite and 2
equivalences of HCI, similar to that of the 3-AT reaction. The reaction yielded no
colored products and appeared much like that of the starting material. A comparison
between tne '"H NMR of alanine and the reaction product, Fig 2 and 3, indicates that
indeed something did occur. The spectra for alanine indicate the methylene doublet at
2.2 ppm and the o-proton quadruplet at 4.5 ppm.  The reaction product indicates that the

methyl doublet at 2.2 ppm no longer exist; however, two new doublets at 2.7 and 2.9 ppm

‘n




appear. A singlet at 3.2 ppm has appeared. Two new quadruplets have appeared at 5.4
and 5.6 ppm. There are trace indications of other products in the proton spectra as well.
The ’C spectra for alanine reveals the methyl at 16.5 ppm, the o-carbon at 51.2 ppm. and

the carboxylate carbon at 176 ppm, see Fig. 4. The "’C spectra of the reaction product is
more difficult to interpret, see Fig 5. The spectra of the reaction product shows 3 methyl
carbons at 21.6, 23.3, and 21.6 ppm. The a-carbons appear at 58.7 and 69.6 ppm (one is
potentially lost in the MeOH-d, signal). Three carbonyl at appear 177.9. 180.8. and
182.9 ppm. This is consistent with predicted substitutions of different anions upon
deamination forming the carbocation. Predicted substitutions include -Cl. -OH. and -
NO.. This data is also in agreement with the three UV absorbing peaks observed in CE.

We also examined the alanine reaction products using HPLC-ESI-MS. Our first attempt
was using negative ion mode. Figure 6 illustrates the observed chromatographs for the
214 nm UV signal and MS. Most of the reaction products are very polar and clute at or
ncar the void peak. Extracting the 88 m/z peak reveals that no alanine remuains.  In
addition, the predicted hydroxyl- and chloro- substituted compounds were observed at 89
and 107/109 m/z, respectively. There was no signal detected for the nitro-substituted
alanine. A signal for 71 m/z was observed which can be attributed to the formation of a

double bond between the a- and B-carbons. The type of elimination is suggested in some

lext

Analy sis of the reaction products in the positive ion mode surprisingly gave a number of
strong signals, see Fig. 7. These species are likely decarboxylated or contain multiple
amines 1n order to yield the positive ions observed. Very weak signals were observed at
91 and 73 m/z which correspond to the hydroxylated and elimination products observed
in the negative 1on spectra. Much to our surprise, higher mass peaks were also observed
at 211, 268, 320, 325, 377, 382, 434, 439, 469, and 491 m/z. Initially, we could see no
correlation of an oligomeric series in these peaks. While in the preparation of this report,
we recognized that every other signal varies by 57 m/z. Figure 8 illustrates the extracted
ton chromatogram for the series at [320 + (57) x n] and Figure 9 is for the series [211 +
(57) x n]. This 57 repeat unit was quite puzzling and indicated a significant change in the

structure of alanine was occurring in the reaction.

The 57 mvz repeat unit does not contain chlorine as indicated by the lack of isotopes in
the mass spectra. This means the repeat unit may contain C, H, N, and/or O. A simple




mass calculator gives the following possible imperial formulas: C,H,0,, C,H(N..
C.H.N,0,, C;H,0,, and C;H;N,. Of these possible formulas, only C,H;N,0O, seems to be
feasible due to valances. Possible structures would be:

Q o
p== N
NSO N
CH3 CH2
57 repeat unit 57 repeat unit

A structure similar to the left was proposed by Austin as a polymer product resulting
from the deamination of glycine with nitrous acid [3]. However the reaction mechanism
proposed by Austin is derived through methylnitrolic acid, which is not feasible from the
tructure of alanine. The proton NMR indicated the presence of a singlet at 3.2 ppm,
which can not be explained by a substitution or elimination reaction. The singlet
supports the structure on the left and not the oxime type structure suggested on the right.
The repeat unit was not observed below 211 or 320 m/z for the two series and seems to
co to higher masses. As indicated by the differences in retention times on the HPLC,
these are 2 discrete series of oligomers with 2 different initial head groups but the same
repeat unit. The polymers are likely to contain a strongly basic group due to their strong
presence 1n the positive ion spectra and lack of in the negative ion spectra. A brief
terature search on such an oligomer yielded no results but a comprehensive search was

not pertormed.

Koy quesuons lie in the fact that since this observed polymer is not a strong UV-
ahsorbing species, is it present at significantly higher concentrations with respect to the
other species formed in the alanine reaction? Unfortunately, ESI-MS signal is very
structure related to the observed ionization efficiency, and, therefore, it 1s not a good

indicator of product yield unless standards are available.
Phenylalanine
The amuno acid phenylalanine (Phe) was also chosen as a model monomer to test this

reaction. It adds the aromatic functionality to the reaction without the aromatic amine or

hyvdroxyl group found in 3-AT.



H
H,N_| _COOH
G

H,p
Phenylalanine
MW = 165

Phenylalanine was reacted under the same reaction conditions as 3-AT with 5.5 and 2
equivalence of NO, and HCI, respectively. Once again, the reaction product was largely
colorless. and a white precipitate formed that appeared to be the starting material. Phe.
We would expect to see the a-hydroxy- and a-chloro-Phe formed as in the alanine
rcaction. The HPLC chromatogram shows that a complex mixture of reaction
components has been formed, which have a good absorbance at 214 nm, see Fig. 10.
However. when the products were examined at 405 nm, none produced the 405 nm
absorbance associated with many of the 3-AT products. In fact, none of the products had
a significant absorbance above 300 nm. By examining the MS signal, we see the peak at

6.6 min in the 214 nm trace contains the elimination product, 147 m/z: the a-hydroxy-

Phe. 165 m/z: and the o-chloro-Phe; 183/185 m/z, see Fig. 11.

I}l COOH HO }-Ii COOH Cl I-l‘ COOH
%/ \CI/ \Cl:/
CH H, CH,

MW = 148 MW = 166 MW = 184 / 186

No signal was observed for the a-nitro-Phe, 194 m/z, or nitrated aromatic products of the
hydroxy and chloro substituted species, 210 and 228 m/z. These products much followed
the predicted reaction products observed from the alanine system. Addition products are
also observed that are more retained on the column. The peak at 15 min corresponds to
an unidentified component having a mass of 242, see mass spectra in Fig. 12. This
component appears to contain one Cl atom as indicated by the 241/243 isotope pattern.

o




Four other components eluting in the 16-18 min range also give strong MS signals.
Interestingly, these 4 species also have identical mass spectra, suggesting that they may
be positional isomers of one type. These species all have a 313 m/z signal, see Fig 13.
This corresponds to products with mass of 314 which means it contains either none or
two nitrogen atoms. The only reasonable structure that we can assign to such a mass in

given below:

H H -
I _COOH | _COOH
0—C H HO—C H
[ | _COOH | | _COOH
CH————? CH, ?
@ CH, CH,
MW = 314 ' MW=3M:E

These products could form from the carbocation attacking either the methylene carbons
or the o-. m-, or p- positions of the aromatic ring. A mass spectra for the products is
<hown in Fig. 14. The fragments observed at 165 and 147 are in agreement with the

proposed structures.

To attempt to identify additional components and confirm proposed ones, the Phe
rcaction product was also examined in positive ion mode. The chromatography is
identical. however several of the products yielded better signals in the MS in positive
mode. Figure 15 shows the 214 nm trace and the TIC. All of the products observed in
the (-»-mode were acids so it is doubtful that they will be observed in the (+)-mode as
[M=H] 1ons. That was indeed the case. The 7 min peak corresponding to the a-
hyvdroxy-Phe vielded only a 121 m/z peak which would correspond to the loss of CO,H
viclding the cation radical. The signal at 9.0 min yields 91 m/z, due to a benzyl cation,
and 1s likely only a fragment ion. The 314 mass isomers proposed above are also seen in
the MS as [M+H]*, [M+Na]’, and [M-H+2Na]’, see Fig. 16.

The Phe reaction also yielded a series of products that could be extracted into CH,ClL,.
These components were also analyzed using HPLC-MS, but with APCI instead of ESI.

The 214 nm trace shows that again a complex mixture of products is observed that seem



unrelated to the aqueous soluble components, see Fig 17 (note that this chromatogram
was obtained under different chromatographic conditions and can not be correlated with
the aqueous soluble components). The TIC gives peaks for products at 166, 225, 354,
285, and 382 m/z, see Fig 18. Their corresponding spectra are attached. Figure 19a-d.
however no further attempt was made to identify these components.

Unfortunately, the Phe reaction demonstrates the complexity of the products that can’

exist with the addition of the aromatic ring. It is important to note that no repeat unit

analogous to that observed with alanine was detected.
Tvyvrosine

We examined tyrosine (Tyr) as a potential analog as well. It introduces the phenolic

eroup into the reaction, which could potentially be reactive.

H H
H,N_I _COOH HO_ I _COOH
;i ;i
CH, CH,
“NO,
OH OH
Tyrosine MW = 227
MW = 181

The tyvrosine reaction products seem to only add complexity to a complex picture. Figure
20 lustrates a 214 nm CE electropherogram obtained from the tyrosine reaction product
atter the addition of acetone. There are two predominant species observed, but a large
number of others as well. When we attempted to analyze this product with CE-MS, only
4 small fraction of the components yield MS signals, see Fig. 21. The extracted ion

chromatograms (EIC) reveal the o-hydroxy-Tyr at 181 m/z, the elimination product at
165 m/z. and a nitro-substituted-a-hydroxy-Tyr at 226 m/z (see structure above). No

signal was observed for the chlorinated species. These species were expected, but no

coupling reactions were observed that yielded higher MW species.
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When analyzed in the HPLC-MS, the tyrosine reaction products gave a very good
separation at 254 nm, however, little signal was observed in the MS, see Fig. 22. This
MS signal at 16.5 min corresponds to the nitro-substituted-o-hydroxy-Tyr at 226 m/z.
The P.I. feels that incorrect MS parameters are likely the reason for the lack of MS

signal.

3-Nitrotyrosine

A similar analog examined was 3-nitrotyrosine. This analog proved to be as reactive as
tyrosine. The major reaction product proved to be the o-hydroxy-3-nitrotyrosine. The
CE trace revealed that a complex mixture of products is observed, but difficulty remuined

in producing ions for the MS.
DOPA

DOPA was chosen as an analog because it has similar electron density on the aromatic

ring as 3-AT but without the reactive aromatic amine.

H H
HNLLCOOH  HN.T.COOH  Hol-COOH

| §
|
CH, CH, CH,
OH O,N OH OyN OH
OH OH QH
DOPA MW =242 MW = 243
MW = 197

The DOPA reaction yielded only a few products. LC-MS shows a few very products that
elute near the void and a large peak at 5 min and one at 9 min, see Fig. 23. The expected
o-hydroxy-DOPA ion, which would be at 199 m/z was not observed. The peak at 5 min
contains two nitrated forms of DOPA. One is the nitro-DOPA at 243 m/z and the other is
o-hydroxy-nitro-DOPA at 244 m/z. It would be possible that the 244 m/z signal is only
an isotope of the 243 signal; however, the isotope abundance is much higher than would
be expected, and it attributed to the hydroxylated species. Another strong MS signal was




observed at 4 min for 238 m/z, a weak product in the UV signal. However, no structure

could be assigned to this product.

Any interesting question is raised to account for the lack of reactivety of the a-amine
group as was observed in each of the other amino acid analogs. Perhaps the ot-amine is
under going strong intramolecular hydrogen bonding with the 3-hydroxy group of

tyrosine that is protecting the amine from the nitrous acid and deamination. There is an
apparent increase in nitration reactivity for the dihydroxy as well.

HAHA

We synthesized 3-amino-4-hydroxy-hydrocinnamic acid (HAHA) as an analog. HAHA

is 3-AT without the a-amino group.

NH,

OH
HAHA
MW = 181

Thisv analog was of particular interest to us since it forms a polymeric substance very
simutar to that of p-DAT. We analyzed this reaction with CE and CE-MS. Figure 24
shows a CE trace at 214 nm of the reaction products. The electropherogram contains a
number of peaks that seem to merge into a polymer-like distribution. When this product
was examined in CE-MS, 4 peaks could be detected. The EIC for these 4 peaks are given
in Fig 25. The signals observed were at 181, 226, 361, and 407 m/z. The PI has made a

tentative assignment of the peaks to the following structures:



?OOH ?OOH
G He GH:
H, H,
OH O,N OH
OH OH
MW = 182 MW = 227
?OOH ?OOH ?OOH COOH
|
C|3H2 C|)H2 C|3H2 CIH2
CH, CH, CH, CH,
0~ SOH O,N 0 OH
OH OH OH OH
MW = 362 MW = 406

The production of the dihydroxy species would occur the with lost of N, from the
diazonium vielding the carbocation which could pick up a hydroxy group from the
aqueous phase. The nitrated dihydroxy product is consistent with the reactions observed
from DOPA. The ether-linked ring systems only makes since according to their mass and
arc highly speculated by the P.I. We could find no such reaction in the liteature thal

could explain such products.
2-Aminocresol

As a model analog to access the aromatic amine reactivity, we chose 2-amino-p-cresol (2-

AC). It has similar electronic distribution throughout the aromatic ring as 3-AT.




CH,

NH,

OH _
2-Aminocresol
MW =123

The mixture of products produced from the reaction are simple, initially, but grow 1n
complexity with time. Figure 26 shows the UV at 214 nm, the 405 nm Vis. and the MS
chromatograms observed. The MS signal was obtained in negative ion APCI mode.
Several of the reaction products contain strong visible absorbances characteristic of azo-
linked aromatics. The peak eluting near the void (~1.0 min) has a strong MS signal at
226/210 m/z. which suggest it has an odd mass and would contain either 1 or 3 nitrogen
atoms. Repeating this experiment using N-nitrite revealed, most surprisingly, that 1t
caned 3 '*N atoms from nitrite. Such a mass can not be explained by 3 nitrations or the
formation of an azo-oxide or nitro-azo groups. The loss of 16 m/z could be attributed to
the loss of oxygen from an azo-oxide type. We could not assign a structure to such mass.
The large peak at 3.2 min has a signal at 257 m/z and the N experiment showed it gains
one nitrogen atom from nitrite. This signal can be attributed to the azo linked to a diol
aromatic (on left below) or azoxy linkage between (on right below) the aromatics as

shown below.

2. 0.0, 0

OH o
MW = 258 MW = 258

The peak at 10.5 min in the UV also has a 257 m/z signal and gains only one nitrogen
from nitrite. We suspect that the 3.2 min peak is the zwitterion azoxy linkage which
would be far more polar and elute quicker from the column, and the 10.5 min peak is the
azo-linked diol. These would be typical structures of those predicted by the known
literature. The signals at 18.2 and 19.0 min have MS at 316 and 271 m/z, respectively.
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These species are much more hydrophobic and elute near the end of our gradient. The
18.2 min component gains 2 nitrogens from nitrite and the 19.0 min components only
gains 1 nitrogen from nitrite. Their mass spectra are shown in Fig. 27a and b. With a
mass difference of 45, it can be assumed the first eluting peak is a nitrated analog of the

later eluting peak.

One significant disadvantage of 2-AC is that its reaction products do not precipitate with
the addition of acetone like that of the 3-AT products. If the reaction is allowed to
remain in solution for a number of days or if the aqueous phase is dried away. the
complexity of the products increased greatly. We could separate more than 15 bands on
flash chromatography that yielded a wide range of visible colored products, several with
extended conjugation like that of p-DAT. However, it attempts to concentrate the
components from the flash column so that NMR spectra could be obtained. notable
changes in most of the fractions were observed. The color of most products went to a
dark green or black, assumed to be oxidation products. Figure 28 shows an HPLC
chromatogram of the 2-AC reaction mixture that was allowed to stand for 10 days. More
than 30 products are detectable in the 214 nm trace. Most components had absorbance
mavima in the 350-450 nm range with absorbance extending in the 600 nm range. The
MS gave a much better signal in the positive mode for most of these components. The
first eluting peaks at 1.1 min appear to be a mixture of 2-AC and 2-hydroxy-p-cresol. A
very weak MS signal is observed for 243 m/z which would correspond to the 2.2'-diazo-
p-cresol. A very weak MS signal for 259 m/z is also seen which correspond to a
hvdroaylated-2.2'-diazo-p-cresol. These are both minor components of the UV trace.
Eaamining the mass spéctra reveals some similarities, Fig 29a-h. First, several of the
components have isotopic ratios at the molecule ion that can't be explained by natural
abundance. For example, in Fig 29b the peak 363 m/z is almost the height of the 362 m/z
peak. It can not be attributed to *C or *H atoms or ***’Cl, which would separate the
isotopes by two m/z units instead of the one, observed in this usually isotope pattern.
Sceondly, all but one spectra show a loss of 123/124 m/z fragment which would support

an cther hnkage as shown below:

h



CHy

4'R
O

OH
neutral fragment loss of 123 m/z

There appears to be one set of cis/trans or positional isomers at 6.5 and 7.5 min both 48§
m/z signals are identical spectra which would strongly support there is an azo hnkage.
Our attempts to assign structures to these m/z where not successful. This experiment
should have been completed using the “N nitrite to determine the number of mitrogen

atoms added to each molecule.
3.AT with 1 equivalence of NO,

We obtained reference spectra of 3-AT in NMR and IR for comparison with later reaction
products. The proton NMR of 3-AT in D,O is fairly simple, see Fig 30. The starung
material had four signals for the seven protons: the methylene at 3.2 ppm: the a-proton at

4 2. 4 singlet at 7.2; and the remaining two arocmatic protons between 7.0 and 7.2 ppm.

The 1'C NMR for 3-AT in D,0 gave 9 clear signals for each of the carbons: 34. 54, 117,
IIN. 125,126,131, 150, and 171 ppm, see Fig. 31. We attempted to assign these carbons
hased on two articles using compounds similar to 3-AT but with variations of the amino
ao1d head group. However, these references had a disagreement between the assignment
ot the aromatic carbon shifts, and we did not give an assignment. The IR spectra for 3-

ATis givenan Fig. 32

The most reactive amine was thought to be the aromatic amine. Upon diazotization, the

diazonium product can under go deprotonation to form diazo as shown below:

R R R
NaNO,/HCI
2 s loss of HCI
NH, , N+\\N N%N'
OH OH O

diazonium diazo




NMR or IR can not distinguish between the diazonium and diazo forms. We reacted 3-
AT with one equivalence of nitrite to form the diazonium/diazo species we distinguished
as diazonium-3-AT (DAT). DAT is obtained by adding an excess of acetone. which
causes the diazo species to precipitate as a yellow solid. This species can be isolated as a
BF, or a PF, salt and, when isolated, has a bright red color. Proton NMR reveals that

the o- and B-protons of the side chain are still intact and unchanged, see Fig. 33. The

three aromatic protons are still present in much of the’same pattern as 3-AT: however.
one aromatic proton has shifted to 6.6 ppm. The '"C NMR still shows the 9 carbons but
has carbonyl shifts at 170's ppm, see Fig. 34. A tentative assignment of the carbons was
made based on a reference where the 2-diazonium-p-cresol had been isolated [4]. The IR

spectra shows the characteristic 2250 cm band associated with diazoniums. see Fig 33

We performed HPLC-MS on this reaction product. Figure 36 illustrates a peak ncar the
void at 1.0 min and two additional peaks at 9 min, which have strong 403 nm
absorbances. Examination of the MS at 1.0 min shows the 208 m/z for the diazonium
species and its fragment for loss of N,, see Fig. 37. An additional peak appears at 198
m/z that corresponds to the dihydroxy species. The peaks at 9 min both give 1dentical
spectra, see Fig 38, at 405 m/z. Our initial thought was that this component was an azo-
linked species (one hydroxy and one dihydroxy), but the fragmentation of MS does not
support this structure. We found that if the 1 equivalence reaction is allowed to set over
extended periods of time, a red precipitate begins to form, which corresponds to this
species. We ran MS-MS on the 404 MW component to confirm if it was the broposcd
azo hinked species. see Fig 39, but it proved not to match the expected fragmentation.
Ficure 40 shows the proton NMR of this species obtained in D,O/NaOD. Most
importantly. we can see that some change has occurred to the aliphatic protons
introducing new shifts in this region. The low solubility of this species prevented us from
obtaining a ''C spectra on this material. One critical question that must be addressed
before assuming too much from the proton spectra is to know if this product is a pure
substance or mixture of components. This component is not observed in 3-AT with 5.5

equivalences of nitrite added so we did not peruse its characterization further.
3-AT with 5.5 equivalence of NO,

When the 3-AT reaction is performed with 5.5 equivalence of nitrite, the aliphatic amine
is now attacked by nitrous acid as well. We performed this reaction in D,O so that we




could examine the reaction products directly without extraction. Figure 41 illustrates the
proton NMR observed from this reaction. First, the aromatic region looks basically the
same as the reaction preformed with 1 equivalence of nitrous acid. However, the
complexity arises in the aliphatic protons. Two additional forms of the o-proton are
observed at 4.3 and 3.8 ppm. The methylene protons are divided among a very complex
pattern between 2.3 and 2.9 ppm. There also appears to be traces of multiple additional
components. Our attempts to obtain a '’C spectra where not successful under these
reaction conditions. A precipitate begins to form after a short period of time due to the
limited solubility of some products in the acidic media. It was also noted that the
aliphatic proton region alters slightly with time, indicating that additional reactions occur
in the aqueous phase. We changed the solvent to a mixture of 50:50 D,O/DMSO-d. to
attempt to enhance the solubility of the reaction components. The change in solvent
shifted the spectra of 3-AT in both 'H and "'C, see Fig. 42 a and b. Upon examination of
the reaction spectra, we see that the aromatic region is much like that observed in the D.O
wolvent and is similar to the | equivalence reaction but the aliphatic protons appear
somewhat broaden, see Fig. 43. The multiple forms of the a-proton are not detected. but
instead. there appears to be two singlets at 3.3 and 3.8 ppm. The complexity associated
with the B-protons are still apparent. The ’C spectra hints of the complexity as shown in
Fig 43, There are 5 clear s'ignals in the carbonyl region at 179 to 184 ppm compared to

the two cbserved with the 1 equivalence nitrous acid reaction (carbons 1 and 7).

The carbon assigned to the diazo group also appears now in 4 or more forms at 93.6 to
94.3 ppm (carbon 8). The remaining 4 ring carbons appear compressed and have 8
separate resonances. Most puzzling is the large shift in the a- and B-carbons to 77.3 and

67.6 ppm. well above the DMSO-d, signal, and they each appear as a single signal.

Examination of this reaction by CE revealed that indeed a mixture of components has
been made but with 2 major products, see Fig 45. The resolving power of CE has proven
quite useful for this project to demonstrate purity and complexity; however, the UV mode
of detection provides little structural information. We have struggled to learn the "art” of
interfacing CE with ESI-MS. The major problem lies in the fact the mass sensitivity for
the MS is near overload capacity of CE and there is little overlapping ground. We have
learned some of the parameters necessary to make MS compatible with CE. Figure 46
illustrates the positive ion mode TIC for the CE-MS of the 3-AT reaction product. There
are 4 peaks detected. First at 4.5 min is the Na* ions which form clusters with the

on



ammonium acetate electrolyte (note: this peak is not detectable in the UV
electropherogram above). The extracted ion chromatograms for 223, 209, and 199 m/z
are also shown in Fig 46. The mass spectra of the 209 m/z component is consistent with

that of the a-hydroxy-3-diazonium-tyrosine, see Fig 47.
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The 199 m/z mass spectra is consistent with the a-hydroxy-3-hydoxytyrosine. see Fig.
48. No structural assignment is given to the 223 m/z spectra shown in Fig. 49. When the
same sample was analyzed using CE-MS in negative ion mode, the same two species
were observed with m/z of 221 and 207, corresponding to the [M-H] peak of the

structures given above (data not shown).

The products of the 5.5 equivalence NO, reaction were also analyzed using HPLC-ESI-
MS. We have one major concern with the methodology which lies in the fact the some
reaction components bind irreversibly to the HPLC column and they never elute. A
second problem we faced was the fact that, at neutral pH, most components are so polar
thev co-elute in void peak and true mass spectra can not be observed for an coeluting
species without MS-MS. In order to achieve retention, we where forced to run at lower
pH (~3-1). We focus to a great extent using traditional TFA-aqueous-organic gradient
tvpically used in the analysis of proteins and peptides. We found the TFA forms a
precipitate when mixed with some reaction components and was not suitable as a mobile
phase modifier. Mildly acidic separations were obtained using acetic or formic acids, but
the pH frequently had to be changed post-column in order to yield good ions in the
negative mode ESI-MS.

Positive ion mode HPLC-ESI-MS gave a good separation of the four major components

obtained and is consistent with the separation obtained with CE. Figure 50 illustrates the




254 nm, the 405 nm, and the TIC. Three of the components observed have a strong 405 .

nm signal indicating they likely possess the diazo group. The peak in the 214 nm trace at
4.3 min produces a very weak positive-ion MS signal. A spectra associated with this
peak is given in Fig. 51. It is unlikely that the peak has either an acid or base functional
group due to its weak signal. It is likely a decarboxylated and deaminated species of
some type. The 12 min peak corresponds to the a-hydroxy-diazo-species observed in the
CE-MS, spectra shown in Fig. 52. The first eluting peak at 15 min corresponds to the
dihydroxy species also seen in the CE-MS, spectra shown in Fig. 53. The later eluting
peak at 15.2 min did not yield a significant MS signal in the positive ion mode. When the
sample was examined in negative ion mode, two MS peaks seem to appear. see Fig. 54.
The 13 min peak corresponds to the a-hydroxy-diazo-species as observed in the posm.\'c
ion spectra at 207 m/z, see Fig. 55. Surprisingly the MS signal for the dihydroxy species,
‘which would have had an [M-H} ion at 197 m/z, was not observed. Instead, we see a
strong signal at 225/227 m/z which indicates a chloride isotope, see Fig. 56. This was
quite confusing initially, but considering that the 199 m/z species observed in the positive
1on mode is actually a a-chloro-diazo species, then the 199 m/z signal is attributed to the
Joss of N.. This theory is further supported by the fact that this peak had a strong 405
absorbance, which would not be characteristic of a dihydroxy species. Thus. we now

assien this peak to the a-chloro-diazo species illustrated below:
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The 15.2 min peak yields ions in the negative mode, and its spectra is given in Fig. 57. It
[M-H] signal appears at 221 m/z, which corresponds to the 223 m/z observed in the
positive ion CE-MS of this product.

The addition of the extra equivalences of nitrite seems to yield the predicted -

deamination products observed in the 3-AT analogs. We found it notable that no nitro-




substitution on the aromatic ring appears to occur in the initial aqueous reaction. The 2
major components that we can identify are the a-hydro-diazo and a-chloro-diazo

derivatives of 3-AT.

Gas Analysis

A series of experiments were performed to quantify the gas released from the initial
reaction of p-DAT. The reactions were allowed to react for 10 minutes after which the
evolved gases were analyzed using GC with thermal conductivity detection. The data

from this series of experiments is summarized in the table below.

Percent Area of Component

Sample N, NO Co, N,O
Control (1min) 99.81 0 0 0.18
Control (10 min) - 61.12 37.58 0 0.28
3-Aminotyrosine  67.56 14.59 12.78 0.75
2-Aminocresol 98.29 0 0 0.79
Phenylalanine 72.90 4.94 20.91 1.20
DOPA 39.58 55.23 2.02 0
3-Nitrotyrosine 80.39 0.15 17.14 2.30
HAHA 93.31 0 5.51 1.18

This data 1s not calibrated in any way and simply represents the percent area of the totul
observed for each chromatogram. Since these gases are approximately the same mass we
can muke a rough approximation that their response to the detection would be equal. In
simpler terms, twice the area is approximately twice the concentration of the gas. Our
control experiment revealed the N,, NO, and N.O are evolved just as predicted. The 3-
AT reacuion evolves a decreased amount of NO, but there 1s some CO, released. We
were somewhat surprised by this, but it would be consistent with loss of the carboxylate
tollowing the loss of the a-amino yielding a carbene. The fact the CO, percentage is so
high 1s troublesome, and it conflicts with elemental analysis data to be discussed. The
ratio of N, 1o CO, is around 5.5. The fact that phenylalanine, DOPA, and 3-nitrotyrosine
vary significantly among their N./CO, ratios is disturbing since we feel that these should
all have similar behavior in the deamination/decarboxylation at the o-position. The P.I.

is unsure if this is due to poor experimental accuracy or that these reactions could vary



this much due to changes in structure of what is assumed to be an unreactive portion of
the molecule. From this data, we feel that some decarboxylation is occurring, but we

question to what extent.
Formation of p-DAT

As previously stated, our method of characterization of the DALM polymer has been
initially focused on the sole characterization of the ‘p-DAT polymer. Then. if successful,
we would proceed to the addition of luminol. There have been many preparation
protocols developed for the formation of DALM including biological and synthetic
methods. When we submitted the proposal for this project, our group's effort was to be in
collaboration with Dr. John Wright's efforts at this institution. We have relied solely on
the protocols provided by his previous research for the synthetic production of p-DAT
and DALM. Briefly, this protocol is given below:

Synthetic Formation of p-DAT
I 4.14 g of NaNO, (5.5 equivalences) is added to a breaker containing 20 mL of
Milli-Q water.

2 3.23 ¢ of 3-amino-L-tyrosine*2HC] are added to a second beaker containing 20 mL
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of Milli-Q water.

The solutions are mixed in a large beaker and placed in the dark for 30 min. Note
that this procedure should be performed in a hood since a large amount of gas 18
evolved.

4+ Add 800 mL of acetone and allow to set overnight.

S A reddish-brown precipitate will form. Using a suction filter and #2 Whatman
paper. filter the precipitate from the acetone solution. The precipitate is the
polvmer. Heating the precipitate appears to accelerate the polymer formation, but is
not necessary.

Note: We established that acetone is not necessary to form the polymer and that

speed vacuuming the mixture after step 3 results in the same product.

We have attempted a great number of experiments to attempt to characterize this
polymeric substance. We have also synthesized a number of analog polymers, which

seem to have similar properties. This report will discuss those we feel are significant.

UV/Visible characterization of p-DAT

ialal



The UV/Vis analysis of 3-AT, sodium nitrite, and their immediate aqueous phase
products are given in Fig. 58. 3-AT has no absorption above 300 nm. Sodium nitrite has
an absorbance maxima at 350 nm but quickly diminishes. Solutions of NaNO, are
colorless. Mixing the 3-AT and NaNO, immediately forms a golden yellow color which
appears orange/brown when concentrated corresponding to the absorbance maxima at
404 nm. The 404 nm absorbance is due to the aromatic diazonium/diazo group. When
the precipitate from the polymer formation has been dried and dialyzed to remove lower
MW components, it has a significantly different appearance than the starting materials.
see Fig. 59. The polymer has a fairly strong low UV absorbance, likely due 10 RtoR"
transitions, but also has an extended pigmentation absorbing beyond 650 nm. The nature
of the visible absorbance is likely the key to the polymer formation.

IR Analysis of pDAT

The IR spectra of p-DAT obtained from pressure-assisted ultrafiltration (MWCO 10k~
shown is Fig 60. This spectra is quite featureless compared to the 3-AT spectia
Absorptions appear at 3420 (broad), 1600 (strong), 1510 (weak), 1400 (weak). and 1230
cm' (weak). This is quite surprising considering the complexity believed to be in the
polymer. We had a diffuse reflectance spectra obtained to see if any other absorbuance
might possibly be detectable in this variation of IR, see Fig. 61. The spectra showed ull
of the same absorbances. The broad 3400 peak is likely due to a bonded-OH and H.O
that is formed as a hydrate with the polymer. The 1600 band is assigned to a carbonyl.
likely from a carboxylate salt. The 1500 absorbance could be assigned to a great number

of groups. but we feel it is likely a -NO, group.
DCS of pDAT.

Differential scanning calorimetry was performed on an aged and dialyzed (MWCO 10k)
sample of p-DAT, see Fig 62. The plot shows no strong transitions up to 500 degrees.
This is quite surprising. There are two weak transitions at 240°C and 410°.

Raman of pDAT

We had hoped that raman spectroscopy could provide us with key functional group
information. Raman has recently found rebirth in polymer analysis due to the enhanced

sensitivity of FT-Raman. We submitted a sample for analysis at Monsanto's Corporate
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Research-Analytical Sciences Center. Dr. Queta Cortez is a senior research scientist and
is a specialist in the analysis of polymers with raman. She attempted to analyze the
dialyzed p-DAT and was unable to obtain a raman signal. Dr. Cortez believes that is
could be due to the near IR absorption associated with the p-DAT causing fluorescence
from the 1064 nm Nd/YAG laser used for excitation. A former student who had worked
on the DALM project under Dr. Wright's supervision, Kenny Roberts, contacted us to see
if we would like to have the polymer analyzed using new raman technology being
developed in his research group at Iowa State University. The standard raman of solution
sample of pDAT yielded no signal and was consistent with Dr. Cortez's findings. The
ISU group was able to get a weak raman spectra by using surface enhanced raman
spectroscopy. Basically, the polymer is chemisorbed on a silver substrate and spectra is
obtained from the thin film. Figure 63 illustrates the resulting spectra; the top being the
raw data spectrum, and the bottom is the subtracted spectra. A number of weak signals
were observed. The strongest absorption at 1386 cm™is characteristic of a diazo linkage
(1300-1400), however there are a greater number of other groups that absorb in this
region. Most likely it corresponds to the carboxylate group (1440-1340, s) observed in
the IR. Despite the great efforts that were put forth to obtain the raman data. there

appears little information that can be used to characterize this polymer.

Elemental Analysis

We submitted a number of samples for elemental analysis including two analog polymers
that we made. p-HAHA and p-Tyrosine, which form under identical conditions as p-
DAT The 1able below summarizes the results of element analysis and the conversions to

the corresponding C/H and C/N ratios.

Elemental Analysis

Element p-DAT ' p-DAT *  p-HAHA p-Tyr
C 50.10 51.13 47.88 41.58
H 4.23 4.64 4.19 4.17
N 9.02 9.01 8.21 6.21
0] ** 32.70 - -
Cl - 2.52¢ - -
Na i <0.025% i i
CH 0.99(0.75) 0.92(0.74) 0.95(0.83) 0.83(0.83)




C/N 6.53 (4.5) 6.66 (4.5) 6.80 (9) 7.86 (9)
C/O - ‘ 2.09 (3)
C/Cl - 60 (0)

p-DAT' was a dialyzed sample (MWCO 10k). It contained a significant quantity of Na.
which interfered with the O analysis (**). p-DAT’ was a dialyzed sample that had Na
removed by passing across a strong cation exchanger. The Cl percentage was not
measured directly, but calculated indirectly since it is the only possible element
remaining (¢ ). The numbers in parenthesis next to the atom ratios represent the ratio for
the starting material. The C/H and C/N ratios match well between the two lots of p-DAT
and are in agreement with that previously reported by Dr. John Wright in his
characterization efforts of the polymer. The desalted p-DAT gave us complete elemental

information.

We were not surprised to-see the C/N ratio increase as would be expected from the loss of
the a-amine. It also indicates that a diazo-type linkage, although it may be present in the
polvmer. is not the most abundant form of linkage. The loss of hydrogen attached 10 both
the a-amine and aromatic amine is supported by the increase in the C/H ratio. Replacing
the a-amine with a hydroxyl group and removing the protons on the aromatic amine
would vield a C/H ratio of 1.00 which is closely match to the observed 0.92 in the p-
DAT- sample. A significant increase in oxygen is indicated by the decrease in theC/O
ratio. Most significantly, this suggests that the polymer retain its carboxylate group. The

increase can be explained in part by formation of the a-hydroxy but this would only raise

the C/O ratio to 2.25. The additional oxygen could be explained from the formation of

the dihvdroxy species, azo-oxy linkages, or substitution with NO,. There are many
possibilities, but it is likely attributed to several things. The presence of Cl was not
surprising since the initial reaction of 3-AT indicated that it is attached in the a-position
for one species detected. We confirmed that the Cl is covalently bond by a negative
response to repeated AgCl test. Because the increased mass associated with Cl 1s higher,
its C/Cl is only 60. If we assume that all 9 carbons of the 3-AT remain intact in the
polymer. then approximately every 7th 3-AT unit will possess a Cl. This crude value is
in agreement with the initial 3-AT reaction results.

Another estimation can be made based on the comparison of the desalted versus non-
desalted p-DAT. If we assume that all of the Na® is bound to a carboxylate group, we can
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estimate the C/COOH ratio by looking at the increase in hydrogen from the elemental -

analysis between the 2 samples. The difference calculates to 0.41% H that corresponds to
a C/COOH ratio of 10.39. This is only a crude estimation, but considering that the H%
came from different batches of p-DAT and that deviation in the two batches will be
maximized by the low weight of H, it matches the C/COOH ratio of 3-AT quite well.

The elemental results from the analog polymers, p-HAHA and p-Tyr, did not provide a
great deal of information due to the fact that complete elemental information was not
obtained. However, there were some surprises. First the p-HAHA (3-AT analog with
only aromatic amine) showed a decrease in the C/N ratio, which suggests that either the
polymer is highly nitrated or the polymeric linkage contains multiple nitrogen atoms
(e.g.. a diazo linkage). We make these statements assuming that the aromatic nitrogen 1s
the source of polymer linkage; however, this is a critical question. The C/N ratio for the
p-Tyr also from decreases 9 to 7.86 upon the polymer formation. We expected the rauo
to remain constant based on the studies from the tyrosine reaction components as
previously discussed. This would be in accordance to the loss of the o-amine and
nitration of aromatic ring, which was the major product we observed. It is hard to
imagine that these two polymers could possess the same form of linkage. However. the
polvmers have very similar properties in many aspects and we have learned to take

nothing for granted in this project.
High Field NMR

We have analyzed a number of p-DAT and analog polymer samples using NMR. We
quickly found that the 200 MHz NMR at our institution was not suited for the complexity
ot these samples. We have been very fortunate to have a State of Oklahoma Statewide
Shared NMR Facility that is based at Oklahoma State University. The centerpiece of this
facility 1s a new 600 MHz NMR. The unique funding of this facility allows our
institution to submit samples for analysis at a greatly reduced cost. The 600 MHz NMR

is the most powerful within 300 miles of our campus.

We obtained a 'H and "*C 1-D spectra of a higher molecular weight (MWCO 10k) sample
of p-DAT that was aged for one month. The sample was a saturated solution in D,0.
Figure 64 is the proton obtained after 30,272 pulses (over two days of acquisition time).
This spectra was most disappointing due to the broadness of the peaks and its lack of

discrete resonances. There is an aliphatic signal at 2.9 ppm (B-position) and 4.3 ppm (o.-




position) and an aromatic signal at around 7.0 ppm. Perhaps most significant are. what
appear to be, singlets at 3.4, 3.9, and 4.8 ppm. These are resonances corresponding to
protons bonded a sp’ carbon. The 1-D ’C spectra is shown in Fig. 65. Very surprisingly.
this spectra has very little signal that should correspond to the a- and B-carbons. There
are 2 small signals at 45 and 79 ppm, but the area is very low. In the aromatic region a
broad signal is observed from 90 to 200 ppm. There appear to be peaks at 124. 138, and
186 ppm, but the weakness of the signal makes this somewhat questionable. Dr. Feng
Qui. the facility manager, felt that our lack of signal could potentially be attributed to the
“presence of a free radical, which could explain the overall lack of sensitivity and

broadness of the signals.

A preparation of p-DAT was prepared using '"'N-NaNO;. In our hopes were to obtain a
"N NMR spectra of the polymer the °N enriched p-DAT should have given an enhanced
«ignal. assuming the nitrite is somehow consumed into the polymer. This preparation
was dialvzed using a lower MWCO (2k) in hopes that the heterogeneity of lower MW
material would be less severe. These two samples MW>2k and MW<2k were prepared
by saturating a solution in D,O/NaOD. Increasing the pH to above 10.0 greatly enhances
the solubility of this polymer. Figure 66 shows a 1-D proton spectra of the MW<2k
sample. This spectra unfortunately reveals the complexity of this polymer system. The
same three signal regions appear as observed in the previous sample (o-, B-. and aromatic
protons); however, there is a large number of resonances occurring in each position. A
host of minor component signals in both the aromatic and aliphatic regions are now
visitble. The singlets near the a-proton that were observed previously are again present.
Dr Qui was unable to obtain a 1-D "°C spectra in a reasonable time period. Instead. we
were able to acquire good spectra using *C-"H-HETCOR technique. HETCOR is much
more sensitive than traditional 1-D C and provides us with the correlation between
which protons are attached to which carbons. This technique requires that the carbon
have a proton attached, which is not the case of carboxylates. Figure 67 provides the
HETCOR spectra for p-DAT<2k. The spectra shows the methylene proton of the -
position and its carbon at 25 ppm. The singlet observed in the proton spectra are attached

to the a-carbon at 59 ppm. A minimum of 19 aromatic signals are observed in the 100-

125 ppmiange.

When the pDAT>2k was analyzed, the results were somewhat encouraging in the fact
that many of the trace signals apparent in the lower MW fraction have now disappeared




indicating they do not play a significant role in the overall composition of the polymer.
Figure 68 is the 1-D proton spectra obtained. It clearly illustrates the many environments
present at the B-position between 2.3 and 2.8 ppm. The somewhat surprising feature is
the o-proton region, which shows 2 discrete signals at 3.8 and 4.0 ppm that have minimal
splitting by the B-protons. The aromatic region is again quite complicated with an array
of signals from 6.4 to 7.4 ppm. The HETCOR spectra, see Fig 69, is very similar to that
of the lower MW fraction. A key difference is the loss of many signals in the aromatic
region. There appear to be 4 discrete aromatic signals at 103, 110, 115, and 121 ppm. In
an attempt to simplify the proton spectra, we obtained a 'H-'H COSY spectra for the
pDAT>2k, see Fig 70. This yields a correlation between which protons neighbor other
protons. The COSY spectra shows the 2 a-protons are coupled to overlapping sets of
doub]eis. The majority of the methylene signal can be assigned to these different
environments of the a-proton, which greatly simplifies the 1-D proton spectra. The
COSY also indicated that one position of the aromatic ring no longer has its proton as
indicated by the missing meta-postion for some splitting patterns. Unfortunately. the
hyvper-fine splitting observed in such a field NMR can make things seem over-
complicated when patterns overlap. This COSY spectra only indicates correlations
between strong peaks and we do not feel that the bulk of the higher MW polymer is truly

represented in the spectra.

We tried a number of different pulse programs in an attempt to obtain a '*N signal but
were not successful. This can be interpreted in a many ways. The elemental analysis
contirms the presence of a significant quantity of nitrogen. but the natural abundance of
"N s only 0.37% meaning that if no N was consumed from the nitrite that the natural
"N i~ to low to detect. The sensitivity of N is less than 1/10 of "*C, and we couldn't
obtain a direct ’C spectra. Dr. Qui suggested that we obtained *C and "N enriched 3-
AT and that he might then obtain direct spectra using '°N-""C HETCOR. We obtained a
tid from Cambridge Isotope for 1 g of enriched 3-AT, and it was in excess of $15,000.
Since this value exceeded our supplies and materials budget, we decided against the idea:
however, 1t remains the most promising method to find the true nature of the nitrogen in

this polymer. which is almost certainly a critical factor in its pigmentation and linkage.

We also submitted samples of 2 analog polymers, p-Tyr and p-HAHA, both dialyzed to
above 2,000 and dissolved in D,O/NaOD. Figure 71 shows the 1-D proton of p-Tyrosine.
* Unfortunately, this system seems more complex than that of p-DAT. There is a large
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distribution of peaks in both the aliphatic and aromatic regions. The a-protons around
3.9-4.1 ppm seem much like p-DAT. However, the B-protons are divided into a number
of regions that range from 2.3-3.4 ppm. The aromatic shows the doublet pattern you
would expect for the 2/6 and 3/5 position of tyrosine, but again, there are a great number
of other environments present that make of a significant percentage of the total arca.
Perhaps COSY could simplify this spectra, but time did not allow for this to be
completed. Figure 72 shows the HETCOR for p-Tyr. Unllike p-DAT. 2 signals are
observed at 40 and 45 ppm for what is assumed as the B-carbon. but this is shifted much
further upfield than p-DAT's B-carbons at 25 ppm. The a-carbon appears up at 75 ppm.
again shifted 15 ppm above p-DATs. The aromatic carbons show the greatest signals at
120 and 132 ppm, which likely correspond to the symmetrical 2/6 and 3/5 positions of
tyvrosine. There are a number of other carbons detected that correspond to un
asymmetrical structure. The 1-D proton spectra of p-HAHA is shown in Fig. 73 Mout
surprisingly it possesses a number of signals from 0.7 to 1.6 ppm, which seem much e
low to correspond to the o and B-protons (2.4-2.7 for HAHA monomer). There are o
number of signals in the 2.3-3 ppm range which match those of the monomer. Most odd
are 2 resonances at 3.8 and 4.0 ppm that match those of the a-proton of p-DAT perfectly.
but this doesn't seem possible considering the structure of the monomer. HETCOR and

COSY spectra would be critical in understanding the nature of these aliphatic signals.
Pyvrolysis GC-MS of p-DAT

In an attempt to gain more information about p-DAT we submitted a sample for flash-
pyrolysis GC-MS to Chemir/Polytech Laboratories in St. Louis, MO. Chemir specializes
in the analysis of polymers and has the state-of-the-art equipment to do such testing.
Pyrolvas studies are not ideal for the characterization of unknown systems since
structural rearrangements are the norm under high temperatures. Samples of p-DAT
were pyrolyzed at 450, 550, and 650°C. The results of these tests are summarized in Fig.
74. The pyrolysis products consist of phenols and benzoxazoles. Figure 75 illustrates the
chromatogram obtained at 550°C. There were 15 different components detected;
however, 6 of them did not give good matches with the spectral library. The structures of

the identifiable components are shown below.
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The presence of CO, confirms the remaining carboxylate group. The p-phenols would be
evpected from the conservation of the basic 3-AT structure. The o- and m-phenols are of
mterest Theyv could be rearrangement products from the pyrolysis or an indication that
the aliphatic chain is somehow attached to the aromatic ring. Another feature of great
interest 1s the presence of the benzoxazole components. Benzoxazole polymers are
formed from heating 2-aminophenols with a carboxylate group attached to a side chain
with compounds equivalent to a-deaminated 3-AT [5]. The loss of 2 H,O molecules
occur during the formation of the benzoxazole ring. Benzoxazoles have been observed in
pyrolysis products from a host of other compounds including nitrophenoxyacetic acids
[6] and oxime materials [7]. This data gives us a clear indication that the aromatic ring is
conserved; however. it does not provide conclusive evidence about the mode of

polymerization. This data needs to be examined more carefully by an expert of pyrolysis
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studies. We attempted to contact two such scientists but neither was interested in our

project.

We also submitted samples of p-DAT, p-HAHA, and p-Tyr to Dr. Robert White of the
University of Oklahoma. Dr. White is exploring new instrumentation that can follow the
thermal degradation of a substance by slowly heating it, trapping the volatile degradauion
component and performing rapid GC-MS analysis on the trapped segments. The results
of his analysis are shown in Fig 76, 77, and 78 for p-DAT, p-HAHA. and P-Tyr.
respectively. The top signal represents the total ion chromatogram observed und the
bottom are the relative signals for CO, and phenol as a function of temperature. It was
disappointing that these were the only two components readily identifiable: however. this
is a new technology still under development. We can see similarities between ull the
polymers. Each emits phenol in the 440 to 560°C range. Also each emits CO. that
rapidly decreases in intensity with tefnperature. It was notable that both p-DAT and p-
Tyr are not releasing their maximum CO, until 300°C. This could indicate a similarity

between the 2 polymers that is difficult to observe otherwise.
High Resolution MALDI-TOF-MS

We analyzed a sample of p-DAT using matrix assisted laser desorption ionization-time of
fhight-mass spectroscopy (MALDI-TOF-MS). This is the standard methodology used for
the analvsis of intact proteins and various other biopolymers. MALDI has also proven
quite powerful for synthetic polymers and is known for is high sensitivity. Dr. Lloyvd
Sumner ran our sample at the Noble Foundation's new proteomics laboratory in Ardmore.
OK. This is a new facility and Dr. Sumner is the former MS lab director at Texas A&M
University in College Station. Figure 79 shows the best spectra that we could obtain.
This was a sample of p-DAT dialyzed between 3k and 10k for the purpose of this
experiment. Despite attempts using many different matrices, we could not improve the
signal in the higher mass region. This MS shown gives a peak at 779 m/z but no repeat
unit can be identified due to the lack of signal at higher m/z. These results were most

disappointing.
GPC of p-DAT

We attempted fractionation of the p-DAT using a series of size-based LC separations. A

variety of separation media were attempted, each with varying success. Media included




Sepharose, Superdex, Sephadex, Sephacryl, and Toyopearl. Separations based on size .

exclusion rely on differences of molecular volume of the analyte. The difficulty we
observed was extensive non-exclusion interactions, which makes estimations of the
molecular weight invalid. In fact, with every media we tried a portion of the polymer
would bind irreversibly to the head of the column. Attempts to elute these substances
with strong acid or base or organics were unsuccessful. The polymer chemically binds to
the media. The media that proved to have minimum non-exclusion interactions was
Toyopearl. Figure 80 shows a chromatogram of the exclusion markers using HW-55§ (1-
200k for dextrans) with the void appearing at 67 min and fully retained at 102 min.
Figure 81 is a chromatogram of crude p-DAT. The peak at 77 min is of much higher

MW than 200k according to our dialysis yet it is retained and appears to be lower MW

We found that we could separate some of the lower MW fraction of p-DAT using
Sephadex. If the 3-AT is left in aqueous solution without the addition of acetone. the
polymer begins to form; however, it occurs over an extended period of time. We hoped
to use this characteristic to trap and identify lower MW components of the polymer.
Figure 82 shows the 254 nm trace and the TIC MS from a 7 day old 3-AT rcaction
separated on a 1 meter Sephadex G15-120 (MW<1500) column. As the chromatogram
shows, we are getting fairly good separation of the lower MW components. Figure 83 15
the 3-D chromatogram for the same separation showing the spectra as a function of time.
A key feature that we noted from this data was that the extended absorbance associated
with p-DAT was observed only in the higher MW fraction eluting at the void and not in
amv of the lower MW components. We are somewhat unsure how to interpret this
information, but it diminishes hopes that lower MW components will yield the secrets to
the absorption spectra. We found that some useful information could be obtained in the
MS. Figure 84 is the mass spectra of the void region at 38 min. What we see is a vast
‘number of different ions formed and little useful information to extract. This is due, in
part. to the acidic nature of p-DAT and the fact the ESI often forms multiple charges in
the individual molecules. The spectra averaged from 40 to 45 min shows a number of
different ions that are real: 765, 737, 586 m/z, see Fig. 85. The averaged spectra from 45
to 50 min has a predominant peak at 585 m/z with what appears to be a fragment ion at
557 m/z (loss of 28 = N,?), see Fig. 86. The 50 to 55 min spectra shows a new species at
503/605 nv/z appearing to contain a chloride, see Fig. 87. The 55 to 60 min and 60 to 65
min spectra shows a strong 405 m/z signal, see Fig 88. The 65 to 70 min spectra shows a
423 m/z signal, see Fig. 89. The separation of these peaks are more clearly demonstrated

in the extracted ion chromatogram shown in Fig. 90. This experiment proved to be quite
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expensive in that small particles from the Sephadex column passed through the frit and
into the HPLC detector and the electrospray needle. We were required to replace the
spray needle and rebuilt the flow-cell due to the damage it caused.

We were quite excited about the separation and MS signals. We attempted to collect the
fractions from the column and concentrate them so that NMR, IR, and MS-MS could be
performed. We were most disappointed in the results after freeze-drying the aqueous
solvent away. The problem we accounted is illustrated in Fig. 91, which is a CE
separation of one of the fractions. No longer is there one or two over lapping
components, but the species has reacted with itself or other species to yield an array IS or
more products. The products eluting from the GPC are much too dilute to be measured
directly by NMR and all attempts to concentrate the eluents results in a host of new
products being from. This is the reactive nature of this polymer system that muake it so
difficult to deal with. Ideally, advanced mass spectroscopic (MS-MS) techniques need to
be performed on these species as they are separated so that structural information can be
cenerated of individual m/z peaks can be obtained even in the case of co-elution from the

column. We do not have this capability at our facility.

When we examined the MS show above in Fig. 85-89 we noted a few similarities. First.
all components seem to have a M-28 fragment ion that is highly characteristic of a diuzo
croup. Secondly, there was a mass difference of 18 between some species and a related
species that contained a Cl atom (indicated by the isotope ratios). The different between
4 "Cland an OH group is 18 mass units. Based on these characteristics we were ablc to
sive a tentative structural assignment to every signal MS signal we observed. These are
purely tentative and no MS-MS has been generated that supports them. All of these
structures are polyphenylene based. This type of linkage was proposed by Dr. Wright. It
could be generated by a diazonium losing N, to form the carbocation which would under
co an clectrophilic attack on a neighboring ring. Dr. Wright's performed molecule
modehing and determined that the most probable position of attack would be the 5-

posiion of the ring based on electron density. Compound A, observed as the 405/407

nmvz tsee Fig 88), would result from one a-hydroxydiazo linking with one a-chlorodiazo
with the loss of N, forming phenyl linkag show. Compound B would result from a
similar reaction of two a-hydroxydiazo compounds. The dichloro product (Compound

C) is also observed, see Fig 89. The addition of a-hydroxydiazo to Compound A would
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yield Compound E, see Fig. 86. The addition of a-chlorodiazo to Compound A would
yield Compound D, see Fig. 87. And finial the addition of an a-hydroxydiazo to

H H H H
HO COOH CI OOH HO OOH HO COOH
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Compound E would yield Compound F. This series of compounds appears to be quite
real. What is not well understood is if that are major or minor components of the
reaction. This data does not provide that information since there may be major
components eluting that are not detected by the MS. MS-MS of this series of compounds
seems critical to confirm their identity. However this can explain the continued reactivity
upon concentration and the toughest of the polymer to withstand digestion and
degradation with a polyphenyl backbone. There a major inconsistency in the loss of N.

would seem to go against the elemental analysis data. -
Degradation of p-DAT

One classic way to characterize a polymer is to cleave the polymer into a number of smull
units that are more easily identified. We attempted this fundamental procedure on p-
DAT using a variety of degradation methods. The degradation methods included
treatment with 2 M HCI, 5§ M NaOH. SnCl,, Na,S,0,, and HI. The possibility of un
amide linkage had been discussed several times within our research group. Amides are
susceptible to both acid and base cleavage under extreme conditions. Extensive
treatment of p-DAT with 2 M HCl or 5 M NaOH at 105 °C for up to one week vields no
consitderable degradation products. The HCI caused an immediate precipitation of the
polyvmer and that could possibiy explain its lack of reactivity. However. the p-DAT
remained soluble in the base and no degradation products could be observed by CE. This
data makes us believe that an amide linkage does not play a role in the formation of this
polymer. SnCl., Na.S,0O,, and HI are all reagents that should cleavage azo-type bonds to
vield 2 amines. The major problem in the treatment of with these reagents is similar to
that of HCI 1n that all require or are strong acids causing immediate precipitation of the

polymer.

When we began examining these degradation products in the MS, we observed two
common repeat patterns that appear polymer-like. These repeat patterns occur at 82 and
136 m/z. The appearance and disappearance of these peaks confused us. We attempted
to perform labeling experiments and isolate this polymer species to no avail. Proper
~ control experiments have clearly shown that these are adducts of the HPLC buffer, the
eluting component. and sodium. For example, the 136 m/z repeat unit we observed when
using trifluoroacetic acid (TFA)-modified HPLC mobile phases gave a series of peaks at
X+136. X4+272, X+408..etc. We now know this is attributed to the component+n(TFA-
proton+Na*). The repeat unit is the TFA-sodium cluster (MW=136). This occurred
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when species that were bound to multiple sodiums, i.e., polycarboxylates, elute from the
HPLC column into the MS. A similar 82 m/z repeat occurs from acetic acids minus a
proton plus sodium. Some lessons are learned hard, and this was a quite disappointing

blow.

Our most successful degradation appears to be SnCl, based on CE. Figure 92 shows a
214 nm electropherogram of a neutralized SnCl, digest of p-DAT>10k. About 10 peaks
are apparent that are new from the dialyzed p-DAT used in the degradation. Despite
many repeated efforts to obtain CE-MS data, this did not prove successful. The
degradation needs to be performed on a larger scale and degradation components
extracted and concentrated for further analysis. At the time this digestion was performed.
we only had a limited quantity of dialyzed p-DAT and the yield from the degradation is
enormously low. We were able to get some separation and detection of a SnCl.
degradation using HPLC-MS. Figure 93 shows the UV and TIC of such a separation.
The MS signal at 7 min and above system peaks associated with the gradient. The first
MS peak at 0.7 min has a 227 m/z signal, see Fig. 94. The second peak at 1.0 min has a
453 m/z and its Na adduct at 475 m/z, see 95. The next peak has a strong 340 m/z pecak
and 1its dimer at 701 m/z, see Fig. 96. It is difficult to assign structures to these peaks

without any other information. A strong possibility for the 227 m/z is given below:

H
0,N_|_COOH

T

CH,

NH,

OH
MW =226

Considering this as a possible structure resulting from the digest of an azo linkage, we
looked for the masses of the corresponding o-hydroxy and o-chloro products that would

be expected: however, these were not observed.

Electron Spin Resonance Spectroscopy
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Due to the weakness of our NMR signals we suspected that p-DAT contained a radical.
We hoped that ESR could prove or disprove the presence of a nitroxide linkage in the
polymer. Dr. Mark Filiphowaki from the University of Arkansas, Fayettevillle ran our
first ESR spectra on the p-DAT polymer. Figure 97 is a spectra of the solid p-DAT
powder. The material gave a signal at 3381 G. The ESR spectrometer at UA was
apparently quite old and was retried shortly after we obtained this data. We questioned
the reference for the g value but were not able to resolve this issue. We contacted Dr.
Yashige Kotake with the Free Radical Biology and-Aging Research Program at the
Oklahoma Medical Research Foundation. Dr. Kotake agreed to attempt to obtain an ESR
spectra. Figure 98 illustrates the signal observed of solid p-DAT. The signal was
observed at 3483 G (g = 2.002). The data indicated that the radical is at a very low
concentration in the polymer (<0.01%). Dr. Kotake suggested that we obtain a spectra at
liquid N. temperature (77°K) to possibly better define the signal, but his facility did not

have that capability.

We next submitted samples to ESR facility at the College of Medicine at the University
of. lowa. Figure 99 shows the ESR spectra of a saturated solution of p-DAT at room
temperature. A signal very similar to that observed by Dr. Kotake was observed at 3485
G but a trace of a signal at 3410 G also appears. When the p-DAT spectra were obtained
at 77 °K. the spectra shifts but retains the same signal shape, see Fig 100. Consulting
with the facility director, Dr. Gary Buettner, he agrees that 3 discrete signals are
observed. one stronger signal centered at 3320 G, a signal with splitting at 3230 G. and a
weak signal near 3420 G. He feels that each of these represent different environments.
The signals are almost as strong at room temperature, and Dr. Buettner said that this was
quite unusual that they are so stable. He felt the stronger signal could be associated with
the aromatic with extended conjugation which is consistent with the nature of the
polvmer. He didn't feel that this was a nitroxide radical, but he stated that when a
nitroxide is restricted from movement they may change drastically. The most interesting
feature appears to be the strongly coupled signal at 3230 G, which corresponds, to a g-
factor of 2.063. This could be a transition metal complexed to the polymer that entered
as an impurity. If this is true, it is likely was an impurity in the 3-AT or NaNQO, starting
material. Similar signals are observed for p-HAHA (Fig 101) and p-Tyr (Fig 102) at
room temperature. These data do confirm why our NMR signals appear so weak for the
higher MW, fractions of the polymers. However the nature of this radical is still in

question.
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Conclusions

This project has proven a most challenging problem. The learning curve for this
chemistry was quite steep for the P.I. since synthetic organic chemistry is out of his field
of expertise. We are still in the process of learning ESI mass spectrometric methodology
and its limitations concerning connection to CE and HPLC. Little literature. if any.
discusses diazotization chemistry under our non-ideal conditions. We are now quite

aware of why multitudes of products appear possible.

We seem to understand the chemistry occurﬁng up to the point of precipitation of the
initial products. Our studies of the analog systems indicate that the polymer mechanism
is likely occurring through more than one mode. The diazo and/or diazoxy linkages are
present to some extent. We do not have a proper understanding of the chemistry behind
how an aromatic amino acid, like tyrosine, can yield a high MW polymer under these
conditions. We have limited evidence that this is occurring through an ether linkage or
by the substitution of the alkyl chain on the aromatic ring from the resulting deamination

products as shown below.

H H
x| ,COOH X _| ,COOH
; ;
CH, X =OH,Cl.orNO;  CH,
OH OH O

The hiterature predicts a diazo type bond is formed under proper conditions. If we
consider that the polymer is composed of an diazo or diazoxy repeat units as shown

above then the element composition indicate the following C/H, C/N and C/O ratios:

Diazo Azoxy p-DAT
C/H 1.1 (X=0OH) 1.1 (X=0OH) 0.92
1.3 (X=Cl) 1.3 (X=Cl)
1.3 (X=NO,) 1.3 (X=NO,)

C/N 4.5 (X=0H) 4.5 (X=0H) 6.66
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4.5 (X=Cl) 4.5 (X=Cl)
3.0 (X=NO,) 3.0 (X=NO,)

The fact that C/N ratio of these proposed structures is significantly different from that
observed in the polymer suggests that it is not the only major component. If we consider
that we have an aromatic ether linkage (A) or a substitution type linkage (B) or the

polyphenyl linkage (C) then, the nitrogen is not conserved.

X< é COOH , COOH x\ H coon
CH" CH‘)
COOH
] He— H,C

OH
fk B (3

It we consider all of the possible products we observed in the analog reactions, there 1s an
cnormous combination of possible sub-units of this polymer.  We unfortunately do not
have a structure to assign that matches the complete data set. The extended conjugation
o! this molecule may only be a minor component of the total polymer composition. The
teel the azo/azoxy linkage are the source of the intense pigmentation but the chemical
ruggedness of the polymer can be better examined by linkages A-C. The fact that the
polyimenization occurs in the solid phase may suggest that the structure is continuously
changing to some degree making it a "living polymer™ which are among the most difficult
to characterize. This would be a characteristic of the room temperature ESR signal we

van observe with this material. We feel that the formation of a ’C-labeled polymer and

MS-MS of the initial polymerization products may be the key to understanding this

svstem. Unfortunately these were not experiments we could perform in this funding

cyvele.

The 1ssue of connection of luminol to the polymer was never addressed properly. We
found the characterization of the p-DAT to be a most difficult task and that it should be
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understood before addressing the attachment of luminol. We feel that luminol likely
couples via a diazo bond, but experiments by Dr. Keil suggested that only it presence

may be required and not chemical attachment to the p-DAT.
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Figure 2
1H NMR of Alanine in D20
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Figure 3
1H NMR of Alanine reaction produc
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Figure 33
1H NMR of 3-AT reaction
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with 1 equiv NO2
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1H NMR of 3-AT reaction
5.5 equiv NO2

Figure 41
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1H NMR of 3-AT reaction
D20/DMSO

Figure 43
5.5 equiv NO2
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in D20O/NaOD
600 MHz NMR
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Figure 73

1H NMR of p-HAHA>2k

in D20/NaOD

600 MHz NMR



The components identified in the pyrolysis GC/MS are summarized below. The assignment of
2-methylbenzoxazole is considered tentative because of small discrepancies in relative
intensities between the observed and the reference spectra.

PYROLYSIS AT 450°C
PROBABLE CHEMICAL IDENTITY

Carbon dioxide

Phenol

Benzoxazole

4-Methylphenol
2-Methylbenzoxazole (tentative)
4-Ethylphenol
4-lsocyanatobenzonitrile

PYROLYSIS AT 550°C
PROBABLE CHEMICAL IDENTITY

Carbon dioxide

Phenol

Benzoxazole

2-Methylphenol

4-Methylphenol
2-Methylbenzoxazole (tentative)
2,4-Dimethylphenol
4-Ethylphenol
2,5-Dimethylbenzoxazole

.PYROLYSIS AT 650°C
PROBABLE CHEMICAL IDENTITY
Carbon dioxide

Phenol

Benzoxazole

2-Methylphenol

4-Methylphenol

3-Methyl benzenamine
2-Methylbenzoxazole (tentative)
2,4-Dimethylphenol
4-Ethylphenol
2,5-Dimethylbenzoxazole

Figure 74
Product of Pyrolysis
GC-MS
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Figure 75

Pyrolysis GC-MS of p-DAT

550 C
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Thermal decomposition GC-MS

p-DAT
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Thermal decomposition GC-MS

p-Tyr
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Thermal decomposition GC-MS
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Date: Tue, Jul 14, 1998 11:15 AM
Data: JCGOO1

Sampling Int: 0.1 Seconds

Data:
b)) oS /"‘ﬁ
‘ 4 ﬂavm bhv

\/
[+0]
V)
<.
~

. (Ye]

tA-

34

AR RIARESISSe R INR SRR SIS EARIRSR SRR R RIS ARIRRRIR NI RN SRR INARINRE RIS IERRIRE RIS RANINERRIRSRISRARIRARAIRAR]

0.0 117.2
Analysis:  Channel A

Peak No. Time Type Height(uV) Area(pV-sec) Area%

1 67.458 *N 16560 7607706 23.024

2 101591 *N 39050 25434410 76975

Total Area 33042116 99.999
Figure 80

GPC of MW markers
Toyopearl HW-55s




Date: Tue, Jul 14, 1998 1:50 PM
Data: JCG0O02

Sampling Int: 0.1 Seconds

- @ ( rude fI4T

D,OJ'/,:!/;

37.885

T T T T T T Y Y T T T T T T T T T T T L T T T T T T T T T I T T T T T e T T T T T
0.0 150.0

Analysis:  Channel A

Peak No.  Time Type Height(uV) Area(uV-sec) Area%
] 37.885 N 262 10921 0.004
42.378 N 169 3033 0.001

47.161 N 62 269 0.000

49.616 N 41 174 0.000

50.410 N 45 217 0.000

50.985 N 41 560 0.000

54.466 N 57 266 0.000

2 77.546 *N 113111 89403140 39.907

3 106.381 *N 161283 134606204  60.085
Total Area 224024784 99.997

Figure 81

GPC of crude p-DAT
Toyopearl HW-55s




Print oI winaow 38: Current Chromatogramis;

Current Chromatogram(s)

DAD1 A, Sig=254,10 Ref=off (D:\DATA\022299\JTS00001.D)
mAU 4
—~— 500 - \
] !
1 i
300 -
. \
. N N \
~ \
200 - \
)

n 20 40 60 80 100 120 min
£5D1 TIC MS File (D:\DATA\022299\JT S00001.D) API-ES Negative .

IV

: ‘l‘,.\ﬁn‘s L . ﬁ‘
= ki Cy W‘l ik

0 8 40 60 80 Figure 82
GPC-MS of 3-AT reaction aged
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filt: 2.5°, Swivel 133.0 °
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Figure 83

GPC of 3-AT reaction aged
Sphadex G15-120
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MS Spectrum
37.935:38.882 of D:\DATA022299UTS00001.D API-ES Negative

*MSD1 SPC, time

MS Spectrum
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GPC-MS of 3-AT reaction aged
MS of 55-60 min fraction
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GPC-MS of 3-AT reaction aged
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ESR of solid p-DAT
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WIN-EPR Acquisition Date: 03/23/2000 Time: 14:00
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Figure 99
ESR of p-DAT solution
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ESR of p-DAT solution
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Figure 101
ESR of p-HAHA

[€ _0T«)

1y ‘eyey-d
aed - gwni3osds\00z e vwoyejo\eiep 1da\SMOANIM\ :D

uot3Tstnboy

wwwmeou

TN

UdE NI




(9]
009¢ 0S8G¢E 00G¢ 0G¥v¢e o0ve 0StEE oo0ce _
O S E O S SES S G L. n B 1 —_— e
o -
I S
| 0 5
i qu
L i W
i oe-
|
‘_
5§ TLL LIT :owt] doams _ oZ-
sW 0Z6 T8 ‘3uelsuo) suwTg
sw 096°0% TUOTSIBAUOD
T?uuey) Teubts / 0T-
O 00°S :opnatrduy - pon
ZHY 00°00T :4Aduanbaixg ‘pon
T :DTuUowIey \\)(!%f?(&lf&ié\l?i!l&!iiZ}}.o
bsp 000 raseyqd 7
vo0+=96° L ‘UutTeH ISAT9D09Y /
IDATI0Y \ 0T
/
MW 0ZT° 02 : T9MOd H
ZHO SLL"6 : Aousnbaaxy
SAEMOIDTW 4
sjutrod 960% juoT3INnyosay
D 000°00¢€ :y3apTM doems o€
9 000°0S¥¢E PTI=Td x93us)
PIaT4d
S :suedg JoO # | . (k4
0002/2Z/€0 :23eq 'nboy }
Ted " 1Z683IS\ " "\:D0 :x03BUOS3Y
WS :x03exado : ' 0S
3STT I23sweleq (€ _0T«)
N-Q“Vm 1y ‘sutsocaki-d :Jusypwo)
AVMVAALV zed-orwnaidads\oozceo\rwoyeryo\eaep 1da\SMOANIM\:D :aYeNpITd

9%:€T dWIL  000Z/%Z/€0 :93eQ uoT3ITSTNDOY AdANTM
i E




